Data-Based Nonaffine Optimal Tracking Control Using Iterative DHP Approach
نویسندگان
چکیده
منابع مشابه
Optimal behaviour prediction using a primitive-based data-driven model-free iterative learning control approach
This paper suggests an optimal behaviour prediction mechanism for Multi Input-Multi Output control systems in a hierarchical control system structure, using previously learned solutions to simple tasks called primitives. The optimality of the behaviour is formulated as a reference trajectory tracking problem. The primitives are stored in a library of pairs of reference input/controlled output s...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملAdaptive Tracking Control for Nonaffine Nonlinear Systems With Zero Dynamics
A direct adaptive neural network tracking control scheme is presented for a class of nonaffine nonlinear systems with zero dynamics. The method does not assume boundedness on the time derivative of a control effectiveness term. Parameters in neural networks are updated using a gradient descent method which designed in order to minimize a quadratic cost function of the error between the unknown ...
متن کاملAn optimal control approach to cell tracking
Cell tracking is of vital importance in many biological studies, hence robust cell tracking algorithms are needed for inference of dynamic features from (static) in vivo and in vitro experimental imaging data of cells migrating. In recent years much attention has been focused on the modelling of cell motility from physical principles and the development of state-of-the art numerical methods for...
متن کاملOutput Based Adaptive Iterative Learning Control Design for Nonaffine Nonlinear Systems
In this paper, an output based adaptive iterative learning controller using an output recurrent fuzzy neural network is proposed for a class of uncertain nonaffine nonlinear systems. It is assumed that the states are not measurable. Without state observer, a sliding window of measurement is introduced to design the iterative learning controller. The main structure of this controller is construc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.2473